Im maschinellen Lernen bezeichnen Kernel-Methoden eine Klasse von Algorithmen zur Mustererkennung. Diese Methoden nutzen sogenannte Kernelfunktionen, welche eine Menge von bekannten Datenpunkten in einen höherdimensionalen Raum transformieren. In diesem neuen Raum sucht die Kernel-Methode nach einer Hyperebene, die die Datenpunkte korrekt klassifiziert. Die Abbildung zum Kernel-Trick veranschaulicht ein einfaches Beispiel. Eine besondere Eigenschaft der Kernelfunktionen ist, dass sie eine implizite Berechnung im höherdimensionalen Raum ermöglichen. Dadurch können Kernel-Methoden bei der Suche nach einer geeigneten Hyperebene hochdimensionale Räume verwenden, ohne die Rechenzeit signifikant zu erhöhen.[1] Bekannte Kernel-Methoden sind unter anderem Support Vector Machines, Gauß-Prozesse und die Kernel-PCA.